Course Number and Name

BPH101 - ENGINEERING PHYSICS I

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Dr. Sree Latha

Text Books and References

TEXT BOOKS

- 1. Sears.F.W., Zemansky.M.W., Young.H.D,; 'University Physics; Narosa Publishing House.
- 2. Avadhanulu. M.N.; Engineering Physics-Vol-1; S.Chand And Company Ltd, 2010.

REFERENCES

- 1. Rajendran.V, And Marikani . A, 'Engineering Physics' Tata Mcgrow ?Hil Publications Ltd,3rd Edition, New Delhi (2004).
- 2. Sears., Zemansky.,, Young.; 'College Physics; Addison Wesley Publishing Company.
- 3. Mukundan. A, Usha.S., Lakshmi.V; 'Engineering Physics' Scitech Publications (India) Pvt.Ltd., Chennai, 2006.
- 4. Resnick, R., and Halliday, D. and Walker, J.; Fundamental of Physics; John Wiley and Sons.

Course Description

To impart a sound knowledge on the basic concepts of modern sciences like engineering applications of ultrasonic's, lasers, fundamentals of crystal physics and utility of solar energy.

Prerequisites						Co-requisites						
+2 level Physics						Nil						
	re	quired,	electiv	ve, or se	elected	elective	e (as pe	r Table	5-1)			
					Requir	ed						
Course Outcom	es (CO	s)										
CO1:Understand the principles and laws of physics												
CO2:To understa	and th	e impa	ct of cry	ystal ph	ysics.							
CO3 :Learn the p	oroper	ties of	elastici	ty & hea	at trans	sfer.						
CO4 :Acquire kn	owled	ge on c	Juantur	n physi	CS.							
CO5 :To underst	tand th	ne conc	epts or	n laser a	nd ultr	asonics	& its a	pplicati	ons.			
CO6 :Understan	d the	orincipl	e of las	er and	its appl	ication	s in eng	ineerin	g & me	dicine.		
Student Outcon	nes (S	Os) froi	m Crite	rion 3 c	overed	d by thi	s Cours	е	-			
COs/SOs	а	b	С	d	е	f	g	h	i	j	k	
CO1	Н						М			Н		
CO2		L	Н		М				М		L	
CO3												
CO4	Н		Μ	L						L		
CO5		L	L								L	
CO6												

List of Topics Covered

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)- Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity-Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress - strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- I-shaped girders Modes of heat transfer-thermal conductivity- Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion –Einstein's A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homo junction & hetero junction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

9

9

9

9

9